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Abstract

If collider experiments demonstrate that the Minimal Supersymmetric Standard Model
(MSSM) is a good description of nature at the weak scale, the experimental priority will
be the precise determination of superpartner masses. These masses are governed by the
weak scale values of the soft supersymmetry (SUSY)-breaking parameters, which are in
turn highly dependent on the SUSY-breaking scheme present at high scales. It is there-
fore of great interest to find patterns in the soft parameters that can distinguish different
high scale SUSY-breaking structures, identify the scale at which the breaking is commu-
nicated to the visible sector, and determine the soft breaking parameters at that scale.
In this work, we demonstrate that 1-loop Renormalization Group (RG) invariant quanti-
ties present in the MSSM may be used to answer each of these questions. We apply our
method first to generic flavor-blind models of SUSY-breaking, and then examine in detail
the subset of these models described by General Gauge Mediation and the constrained
MSSM with non-universal Higgs masses. As RG invariance generally does not hold beyond
leading-log order, we investigate the magnitude and direction of the 2-loop corrections.
We find that with superpartners at the TeV scale, these 2-loop effects are either negligible,
or they are of the order of optimistic experimental uncertainties and have definite signs,
which allows them to be easily accounted for in the overall uncertainty.
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Introduction

The Standard Model (SM) provides an excellent description of the experimental data collected

at high energy physics facilities. However, it has a series of shortcomings and is believed to

provide only an effective theory at energies below a scale of the order of 1 TeV. The Minimal

Supersymmetric Standard Model (MSSM) addresses most of the SM shortcomings: it provides a

solution to the hierarchy problem, is consistent with the unification of couplings at high energies,

leads to an understanding of the origin of the negative Higgs mass parameters generating the

breakdown of the electroweak symmetry, and includes a natural Dark Matter candidate [1–3].

Furthermore, the MSSM provides a weakly interacting extension of the SM in which the SM-like

Higgs mass is bounded from above by about 130 GeV [4–13] and will be within observational

reach of colliders within a few years [14–30]. Finally, MSSM sparticle effects on the precision

electroweak observables efficiently decouple for sparticle masses above a few hundred GeV, in

agreement with the best fit to these measurements (see, for example, [31–33]).

If sparticles corresponding to the MSSM are discovered at the LHC or any future collider,

resolving the properties of the supersymmetry (SUSY)-breaking mechanism will become an

important theoretical and experimental problem. Since most well-motivated scenarios place

the “messenger scale” at which SUSY-breaking is communicated to the MSSM far beyond

direct experimental access, it is likely that the renormalization group (RG) will be our primary

tool for investigating the nature of this mechanism.

The standard approach is “top-down,” where a high scale model with a limited number

of parameters (for instance the CMSSM or mSUGRA) is assumed, and the parameters are fit

to the low scale data using RG evolution. This method is well studied, both in the context

of present constraints from dark matter searches and low-energy observables as well as for

future LHC projections (for a sample of references, see [34–41]). It is now quite a sophisticated

technique (see for instance [42]), but it has a few limitations. Primarily, the reliability of the fit

may be reduced as the number of high scale parameters is increased. It is also subject to the

behavior of uncertainties under RG flow: if they tend to spread as the scale increases, the fit

will become weaker. The top-down approach is also sensitive to the experimental uncertainties

in gauge couplings and SM particle masses, and multiple iterations of RG evolution from

high to low scales are required to consistently incorporate SUSY corrections to the Yukawa

couplings [43–46].

Alternatively, a direct “bottom-up” approach has been studied [47–51] and found to pos-

sess utility complementary to the top-down method. The bottom-up reconstruction has the

advantage of being easy and quite transparent: simple analytic formulae are used to convert

measured pole masses into low scale values of the Lagrangian parameters, including dominant

radiative effects. The running parameters are then evolved up to the high scale at which the

mediation of SUSY-breaking takes place and their structure can be analyzed. This method is
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relatively fast and attractive, and it is less sensitive to the total number of free parameters,

but it also presents challenges: foremost, one does not know the scale that should be used

as the ultraviolet boundary. Additionally, uncertainties in the running parameters must again

be propagated carefully under RG evolution. As in the top-down approach, the β-functions

for each sfermion mass are subject to the present experimental uncertainties in the gauge and

Yukawa couplings. Furthermore, these β-function depend on many MSSM parameters even

at 1-loop order, coupling all of the soft scalar masses to each other through the hypercharge

D-term, as well as to the gaugino masses and the soft trilinear couplings. In Ref. [52], it was

demonstrated that the failure to infer even one soft mass experimentally may be sufficient to

drastically alter the high-scale prediction for other masses.

Here we would like to suggest an alternative technique for the bottom-up reconstruction

program. Within the parameters of the MSSM, neglecting first and second generation Yukawa

couplings, there exists a significant set of combinations of the parameters that are RG invari-

ant (RGI) at 1-loop. We propose that these RGIs may be used to efficiently test and extract

parameters of high scale SUSY-breaking models, including in certain cases the messenger scale.

There are several reasons why RGIs are of particular interest. The first is that in some appro-

priate bases, subsets of the RGIs are predicted to vanish in different classes of SUSY-breaking

models. A low scale measurement of any of these invariants may therefore provide immediate

evidence for or against several attractive high scale models without requiring knowledge of the

value of the high scale. The second reason is that for broad classes of SUSY-breaking models,

most or all of the fundamental high scale parameters can be expressed uniquely in terms of

the nonzero RGIs. If measurements of the first type of RGIs indicate that a particular class

of models is favored, the second type may be used to constrain the parameter space of those

models. Thirdly, none of the RGIs individually involve all of the parameters of the theory.

This property limits the set of physical masses and couplings that must be measured before

high-scale theories can be tested. Finally, from a practical point of view, the use of RGIs

simplifies the standard bottom-up approach: it avoids the integration of RG equations and the

complicated propagation of errors between scales.

Although RG invariance only holds strictly at leading-log order, 2-loop corrections are ex-

pected to be quite small and are likely to be negligible compared with experimental uncertain-

ties. To confirm this expectation, we analyze the 2-loop effects and demonstrate that they can

either be neglected, or absorbed to a good approximation into a simple shift of the measured

value of the RGIs. For each RGI, we show that the shift can be computed from a linear function

of a few dominant sparticle masses.

In this work, we will study RGIs within theories satisfying the following conditions:

• The effective theory at the electroweak scale is the MSSM;

• No new physics alters the 1-loop MSSM β-functions below the messenger scale, at which
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SUSY-breaking is transmitted to the observable sector1.

After deriving a set of invariants under these assumptions, we will apply our method to

test the class of theories in which the SUSY-breaking mechanism is flavor-blind. In addition

to the general case, we will consider two major subclasses of flavor-blind theories. The first

is general gauge mediation (GGM), where the interactions between the SUSY-breaking sector

and the sfermion/gaugino fields of the MSSM are controlled entirely by the MSSM gauge

couplings [54]. Integrating out the hidden sector generates soft mass terms for these fields that

can be parameterized by six constants. Soft masses are also generated for the Higgs doublets,

but it is likely that additional, non-gauge couplings link the Higgs and hidden sectors. We

demonstrate that certain RGIs may be used to test the GGM hypothesis, and if the data is found

to be consistent, other RGIs may be used to extract the full set of GGM parameters, including

the soft Higgs masses at the messenger scale. The second type of SUSY-breaking structure we

examine is the Constrained MSSM (CMSSM) with non-universal Higgs masses (NUHM). In this

case, flavor-blindness is maintained with fewer input parameters than in GGM. Consequently,

all messenger scale parameters may be expressed in terms of a subset of the RGIs. Among the

remaining invariants, several nontrivial relationships must be satisfied for the low energy mass

spectrum to be consistent with the CMSSM + NUHM.

The RGI quantities discussed in this work have all appeared previously in the literature in

various guises, but either as limited subsets or not in the context of a bottom-up determination

for the high scale SUSY-breaking parameters. In Ref. [52] several invariants were introduced for

the purpose of testing high-scale flavor universality in the presence of extra intermediate-scale

GUT multiplets. Ref. [52] also commented on the use of two quantities, DY and DB−L (defined

in Section 2), for probing GUT embeddings of the MSSM. These functions are related to the

RGIs but are not themselves invariant in general: we will discuss the use of the corresponding

RGIs in greater detail for testing gauge mediation and the CMSSM. In Ref. [55] most of

the invariants we will use are listed, but in a basis without the properties discussed above,

rendering them less relevant for probing high scale models with low, single-scale measurements.

In Ref. [54], DY , DB−L, and one other invariant combination of them were listed as potential

tests of GGM; they will be included and expanded upon in our discussion. Finally, Ref. [56–60]

discuss in detail some of the invariants in the context of sum rules for mSUGRA and a variety

of SUSY-GUTs.

We attempt to go beyond previous work on the subject of RGIs by providing a full set of

invariants in a useful basis, a program for using them to explore the structure of the messenger

scale effective theory, a discussion of experimental uncertainties, and an analysis of 2-loop

effects. Our presentation is divided into four sections. In the first, we will derive the RGIs

in a convenient basis from symmetry arguments. In the second we will discuss tests of flavor-

1Here we neglect the possibility that strong couplings in the hidden sector could affect the running of the
soft scalar masses, as pointed out in [53].
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blindness, and under that hypothesis we will express the high scale soft parameters as simple

functions of RGIs and a single gauge coupling at that scale. We will then use the RGIs to test

and determine the parameter spaces of GGM and of the CMSSM + NUHM. In the third section,

we analyze experimental prospects and 2-loop corrections for the RGI method in the context

of GGM. We discuss briefly the minimal set of physical observables necessary to determine the

soft parameters in the RGIs, and estimate the precision with which the RGIs may be used

to constrain the high scale parameter space given a set of uncertainties in the low scale soft

parameters. We derive simple estimates that may be used to subtract out the bulk of the low

scale 2-loop shifts in the RGIs, and demonstrate that residual 2-loop contributions are typically

small compared with optimistic assumptions for experimental uncertainties in the soft masses.

We reserve the final section for our summary and conclusions. An appendix collects some

analytic approximations for the 2-loop β-functions.

1 1-loop RGI Combinations of Soft Masses and Gauge Couplings

In this section we will derive fourteen RG invariants2 and relate several of them to symmetries

of the MSSM Lagrangian. For reference, the RGIs are collected in Table 2.

We begin with RGIs constructed solely out of soft scalar masses. We will assume that the

soft sfermion masses are flavor diagonal in the super-weak basis and that the first and second

generation masses are degenerate at the input scale, as is strongly motivated by low-energy

flavor mixing constraints. Similarly, we assume that there are no new sources of CP-violation

in the soft SUSY-breaking sector beyond those induced by the Yukawa couplings. We will also

neglect first and second generation Yukawa and trilinear couplings since they give very small

contributions to the evolution of the soft SUSY-breaking parameters, smaller than the 2-loop

corrections associated with the gauge and third generation Yukawa couplings. In general, these

approximations tend to be excellent for models in which there exists flavor universality at the

messenger scale, and all flavor violation effects are due to radiative corrections induced by

Yukawa couplings. Finally, we assume that the right-handed neutrino, if it exists, effectively

decouples from the spectrum and the RGEs (see discussion in Section 3). With these conditions,

the soft scalar masses mi obey the following RGEs at 1-loop:

16π2dm
2
i

dt
=
∑
jk

y∗ijky
ijk(m2

i +m2
j +m2

k + A∗ijkA
ijk)− 8

∑
a

Ca(i)g
2
a|Ma|2 +

6

5
Yig

2
1DY , (1.1)

2A few more RGIs exist, such as I2 and I4 of Ref. [55]. However, they are not needed in our investigation of
flavor-blind theories, and they require more MSSM parameters than the set considered in this work, including
the soft trilinear couplings and µ.
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Table 1: U(1) Representations in the MSSM

Particle Y B L

Q=

(
u
d

)
L

1/6 1/3 0

L=

(
ν
l

)
L

-1/2 0 1

u=uC
R -2/3 -1/3 0

d=dC
R 1/3 -1/3 0

e=lCR 1 0 -1

Hu 1/2 0 0

Hd -1/2 0 0

where

DY ≡ Tr(Y m2)

=
∑
gen

(
m2
Q̃
− 2m2

ũ +m2
d̃
−m2

L̃
+m2

ẽ

)
+m2

Hu −m
2
Hd
. (1.2)

The first sum in Eq. (1.1) is over all the degrees of freedom available to run in self-energy loops,

the second sum is over the three gauge groups a of the MSSM, Ma and Aijk are the gaugino

masses and soft trilinear parameters, Ca(i) is the quadratic Casimir for the representation i of

a, and t ≡ log(µ/MZ). The trace in the definition of the hypercharge D-term, DY , runs over all

chiral multiplets. A summary of the B, L and the hypercharge representations for the particle

content in the MSSM is given in Table 1.

We first construct linear combinations, Di, of the soft masses that evolve only with DY ,

Di ≡ Tr(Qim
2),

dDi

dt
= aiDY , (1.3)

where Qi and ai are constants, and again the trace is defined over all chiral multiplets. With

five soft SUSY-breaking masses contributed per generation (for a total of ten soft masses if

the first generation masses are identified with those of the second generation) and the two soft

SUSY-breaking Higgs mass terms, twelve coefficients Qi are associated with each combination

Di. That there are six independent Di satisfying Eq. (1.3) can be seen from Eq. (1.1) as follows.
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For the Yukawa terms to vanish from the β-function, the Qi must correspond to charges of a

global symmetry of the classical Yukawa potential. This affects only the third generation in our

approximation, so it implies three independent constraints on the twelve Qi. For the gaugino

terms to cancel, the symmetry must have vanishing mixed anomalies with the SM gauge groups.

This supplies three more independent constraints on the Qi.

Furthermore, we can construct a basis in which five of these six combinations will also satisfy

TrQiY = 0. This condition eliminates the DY term from the RGEs. These five combinations

are then genuine RG invariants, independent of the vanishing of DY .

Let us first consider baryon number, Q = B, and lepton number, Q = L. Classically, these

are symmetries of the action, but both are anomalous in the MSSM. Within our approximation,

both the baryon and the lepton number associated with each generation is separately conserved

at the classical level and their anomalies are flavor-independent. Hence the differences between

the first (or second) and third generation baryon and lepton number are anomaly-free. With

this in mind, one can define RGIs associated with the new global symmetries: B13 and L13 [52],

DB13 ≡ DB1 −DB3

= 2m2
Q̃1
−m2

ũ1
−m2

d̃1
− 2m2

Q̃3
+m2

ũ3
+m2

d̃3
,

DL13 ≡ DL1 −DL3

= 2m2
L̃1
−m2

ẽ1
− 2m2

L̃3
+m2

ẽ3
, (1.4)

where numbers in the subscripts indicate the generation.

We can also consider non-anomalous U(1) symmetries. The obvious choices are hypercharge

and (B−L). However, since TrY 2 and TrY (B−L) are non-vanishing, these combinations will

evolve with DY .

In the hypercharge combination, the DY dependence can be eliminated by using nearly the

same trick with family non-universality as we did with B and L. In this case, we must include

the Higgs doublets with the third generation, since their soft mass evolution is linked by the

Yukawa couplings. The proper RG invariant combination is given by

DY13H ≡ DY1 −
10

13
DY3H ,

= m2
Q̃1
− 2m2

ũ1
+m2

d̃1
−m2

L̃1
+m2

ẽ1

−10

13

(
m2
Q̃3
− 2m2

ũ3
+m2

d̃3
−m2

L̃3
+m2

ẽ3
+m2

Hu −m
2
Hd

)
. (1.5)

For (B−L), generation subtraction is redundant, since we can construct it out of DB13 and

DL13 . However, even restricting the trace to a single generation, DY and DB−L evolve only

with DY . Therefore we can construct a fourth RGI combination which depends only on the
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soft masses of the first generation [54],

Dχ1 ≡ 4DY1 − 5D(B−L)1

= −6m2
Q̃1
− 3m2

ũ1
+ 9m2

d̃1
+ 6m2

L̃1
−m2

ẽ1
. (1.6)

Here χ1 is used to indicate that this charge assignment is related by an overall re-scaling to the

U(1)χ symmetry generated by the spontaneous breaking of E6.

The E6 breaking generates an additional U(1), E6 → SU(5) × U(1)χ × U(1)ψ, but the

U(1)ψ symmetry is anomalous when restricted to the MSSM and involves the Higgs sector,

which prevents a family non-universal invariant combination. Fortunately, by taking the linear

combination (the “inert U(1)′” [61]),

√
10

2
U(1)χ +

√
6

2
U(1)ψ , (1.7)

and setting the charge of the first generation left-handed sleptons to zero, we obtain an anomaly-

free symmetry, U(1)Z , and the corresponding RGI [52]:

DZ ≡ 3m2
d̃3

+ 2m2
L̃3
− 2m2

Hd
− 3m2

d̃1
. (1.8)

This new symmetry is evidently independent from those already discussed, as it depends only

on m2
Hd

and not on the combination m2
Hu
−m2

Hd
.

Of course, the sixth combination must now run with DY . The RGE for DY is given by

16π2dDY

dt
=

66

5
g21DY , (1.9)

so this combination can be taken to be DY itself. DB−L also evolves only with DY , and as

mentioned previously, so do the restrictions of DY and DB−L to any given generation (plus

Higgs in the case of the third generation DY ). These quantities are then RGIs if DY vanishes,

although only those related to DY are linearly independent of the invariants introduced above.

However, one can construct a genuine independent invariant out of DY that is nonlinear in

running parameters. Recall that the gauge couplings obey homogeneous RGEs at one loop:

16π2dgr
dt

= g3r (Trn Ir(n)− 3Cr(G)) , (1.10)

where Ir(n) is the Dynkin index of the chiral multiplet n, and Cr(G) is the quadratic Casimir

invariant of the adjoint representation. The g1 group theory factor is equal to 33/5 in the

MSSM, and so we obtain the RGI,

IY α ≡
DY

g21
. (1.11)
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Table 2: 1-Loop RG Invariants in the MSSM

Invariant Symmetry Dependence on Soft Masses

DB13 B1 −B3 2(m2
Q̃1
−m2

Q̃3
)−m2

ũ1
+m2

ũ3
−m2

d̃1
+m2

d̃3

DL13 L1 − L3 2(m2
L̃1
−m2

L̃3
)−m2

ẽ1
+m2

ẽ3

Dχ1 χ1 3(3m2
d̃1
− 2(m2

Q̃1
−m2

L̃1
)−m2

ũ1
)−m2

ẽ1

DY13H Y1 − 10
13
Y3H

m2
Q̃1
− 2m2

ũ1
+m2

d̃1
−m2

L̃1
+m2

ẽ1

−10
13

(
m2
Q̃3
− 2m2

ũ3
+m2

d̃3
−m2

L̃3
+m2

ẽ3
+m2

Hu
−m2

Hd

)

DZ Z 3(m2
d̃3
−m2

d̃1
) + 2(m2

L̃3
−m2

Hd
)

IY α Y
(
m2
Hu
−m2

Hd
+
∑

gen(m2
Q̃
− 2m2

ũ +m2
d̃
−m2

L̃
+m2

ẽ)
)
/g21

IBr Mr/g
2
r

IM1 M2
1 − 33

8
(m2

d̃1
−m2

ũ1
−m2

ẽ1
)

IM2 M2
2 + 1

24

(
9(m2

d̃1
−m2

ũ1
) + 16m2

L̃1
−m2

ẽ1

)

IM3 M2
3 − 3

16
(5m2

d̃1
+m2

ũ1
−m2

ẽ1
)

Ig2 1/g21 − 33/(5g22)

Ig3 1/g21 + 33/(15g23)
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Additionally, because of the form of Eq. (1.10), we obtain two additional RGIs

Ig2 ≡
1

g21
− 33

5g22
and Ig3 ≡

1

g21
+

33

15g23
, (1.12)

whose values may be computed from measurements at the scale MZ . In the MS scheme, for

instance, they are approximately −10.9 and 6.2, respectively.

We now construct RGIs with gaugino mass dependence. The three soft gaugino masses,

Mr, evolve with 1-loop RGEs given by

16π2∂tMr = g2rMr (2 Trn Ir(n)− 6Cr(G)) . (1.13)

Again replacing g2r in Eq. (1.13) with ∂t log(gr) and the group theory factor, we recover the

well-known set of three RGIs,

IBr ≡Mr/g
2
r . (1.14)

Finally, there are three RGIs that mix gaugino and sfermion soft mass parameters. Following

the method of Ref. [55], these can be obtained easily from the 1st generation masses because

of the absence of Yukawa couplings and the homogeneity of the Mr and DY RGEs,

IM1 ≡ M2
1 −

33

8

(
m2
d̃1
−m2

ũ1
−m2

ẽ1

)
,

IM2 ≡ M2
2 +

1

24

(
9(m2

d̃1
−m2

ũ1
) + 16m2

L̃1
−m2

ẽ1

)
,

IM3 ≡ M2
3 −

3

16

(
5m2

d̃1
+m2

ũ1
−m2

ẽ1

)
. (1.15)

The invariant IM1 involves the subtraction of potentially large squark masses squared with

a large coefficient. In models possessing a large mass hierarchy between strongly and weakly

interacting particles, the splitting between md̃1
and mũ1 is likely to be much smaller than either

mass, whereas the experimental uncertainty in IM1 grows approximately linearly with both md̃1

and mũ1 . Therefore, the measured value of this RGI is likely to be consistent with zero within

experimental errors. A similar effect may occur with IM2 , but in this case the squarks coefficient

is significantly smaller. One can form a combination of IM1 and IM2 that is independent of the

squark masses, and therefore suffers lesser uncertainties:

IM12 = IM1 + 11IM2

= M2
1 +

11

3

(
3M2

2 + 2m2
L̃1

+m2
ẽ1

)
. (1.16)

In most cases, IM12 may be determined much more precisely than IM1 or IM2 . Indeed, since all of

the terms are positive, the percentage error in its determination is governed by the percentage
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error in the measurement of the weakly interacting sparticle masses.

With the exception of IY α, the RGIs given in Table 1 of Ref. [55] may be obtained3 as linear

combinations of those we have listed in Table 2. However, the explicit relationship to symmetries

in our basis allows a clean application of the invariants to the problem of reconstructing the

theory at the messenger scale.

2 Extraction of High Scale Parameters from RGIs

We now examine the extraction of high scale SUSY-breaking parameters from the RGIs con-

structed in the previous section. The five soft masses contributed by the degenerate first and

second sfermion generations, five soft masses from the third sfermion generation, two Higgs soft

mass parameters, three gaugino masses, and the gauge couplings (assuming no knowledge of

the high scale) constitute eighteen unknowns (more are introduced if the right-handed neutrino

or other new physics is included). In the most generic case, assuming all RGIs are non-zero at

the high scale, fourteen of these parameters may be obtained. Although the system is under-

constrained, the high scale degrees of freedom are considerably reduced by the determination

of the invariants.

As mentioned previously, a large class of SUSY-breaking models favor flavor-universal in-

teractions. Even without the ability to extract all high scale parameters, using the RGIs to

test flavor blindness would be a non-trivial result. Furthermore, in the most generic flavor-

blind models, the number of unknown parameters is reduced to thirteen, whereas the number

of nonzero RGIs is twelve. We will consider the generic case below, as well as the specific

models of GGM and the CMSSM with non-universal Higgs masses. The high scale values of

the invariants listed in Table 2 are tabulated in Table 3 for these three models.

2.1 Generic Flavor-Blind Models

The most immediate consequence of flavor blindness is the vanishing of DB13 and DL13 . There-

fore these invariants provide us with a direct test of the flavor-independent hypothesis with

a minimal set of measurements. More precisely, they allow this hypothesis to be ruled out:

measuring DB13 6= 0 or DL13 6= 0 at the low scale implies high-scale family non-universality;

however, as noted in Ref. [52], measuring DB13 = 0 and DL13 = 0 at the low scale does not

necessarily indicate high-scale universality.

Current experimental data from flavor physics strongly motivates a flavor-universal me-

diation mechanism for SUSY-breaking (for a selection of Minimal Flavor Violation studies,

see [62–79]). Accordingly, if DB13 and DL13 are found to vanish, it is reasonable to proceed a

3A few typos appear in Ref. [55]: the coefficient of M2
2 in I12 should be +3/2, and similarly for I17. The

coefficient of M2
1 should be 1/33, and all coefficients of S should be multiplied by 13/33. Note that with these

corrections, five invariants in the list I5-I17 of Ref. [55] can be expressed as linear combinations of the others.
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Table 3: Values of the 1-loop RGIs in terms of high scale soft parameters.

Invariant Generic Flavor Blind Model GGM CMSSM with NUHM

DB13 0 0 0

DL13 0 0 0

Dχ1 3(3m2
d̃
− 2(m2

Q̃
−m2

L̃
)−m2

ũ)−m2
ẽ 0 5m2

0

DY13H

1
13

(
3(m2

Q̃
− 2m2

ũ +m2
d̃
−m2

L̃
+m2

ẽ)

+ 10(m2
Hd
−m2

Hu
)
) −10

13
(δu − δd) −10

13
(δu − δd)

DZ 2
(
m2
L̃
−m2

Hd

)
−2δd −2δd

IY α

(
3(m2

Q̃
− 2m2

ũ +m2
d̃
−m2

L̃
+m2

ẽ)

− m2
Hd

+m2
Hu

)
/g21

(δu − δd) /g21 (δu − δd) /g21

IBr Mr/g
2
r MBr m1/2/g

2
r

IM1 M2
1 + 33

8

(
m2
ũ −m2

d̃
+m2

ẽ

)
g41
(
(MB1)

2 + 33
10
A1

)
m2

1/2 + 33
8
m2

0

IM2 M2
2 + 1

24

(
9(m2

d̃
−m2

ũ) + 16m2
L̃
−m2

ẽ

)
g42
(
(MB2)

2 + 1
2
A2

)
m2

1/2 + 5
8
m2

0

IM3 M2
3 − 3

16

(
5m2

d̃
+m2

ũ −m2
ẽ

)
g43
(
(MB3)

2 − 3
2
A3

)
m2

1/2 −
15
16
m2

0

Ig2 ≈ −10.9 ≈ −10.9 ≈ −10.9

Ig3 ≈ 6.2 ≈ 6.2 ≈ 6.2
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step further and attempt to extract constraints on the high-scale values of flavor-blind MSSM

soft parameters from the RGIs.

The ten free soft mass parameters can be expressed uniquely in terms of the ten invariants

Dχ1 through IM3 listed in Table 2 and are given in Eq. (2.17)-(2.18). Note that these relations

depend on the three gauge couplings at the high scale; with the invariants Ig2 and Ig3 defined

in Eq. (1.12), they may be expressed entirely in terms of g1. Equivalently, one can reduce the

degrees of freedom at the high scale to a single parameter which can be taken to be the value

of that scale. In particular this permits tests of more restrictive flavor-universal models such as

mSUGRA, taking g1 at the GUT scale. However, if the high scale is not known, one may take

advantage of the fact that the gauge couplings do not vary too wildly with scale and simply

guess values for them, at the cost of introducing a further uncertainty. We will discuss this

possibility further below.

M1 = g21IB1 ,

M2 = g22IB2 ,

M3 = g23IB3 , (2.17)

m2
L̃

= − 1

440

(
26DY13H + 11Dχ1 + 20

((
g41I

2
B1

+ 33g42I
2
B2

)
−
(
IM1 + 33IM2

)
+ g21IY α

))
,

m2
Hd

= m2
L̃
− 1

2
DZ ,

m2
Hu = m2

L̃
− 1

2
DZ −

13

11
DY13H +

g21
11
IY α ,

m2
ẽ =

1

220

(
26DY13H + 11Dχ1 − 20

(
2
(
g41I

2
B1
− IM1

)
− g21IY α

))
,

m2
ũ = − 1

990

(
78DY13H + 33Dχ1 + 20

(
4
((
g41I

2
B1
− 11g43I

2
B3

)
−
(
IM1 − 11IM3

))
+ 3g21IY α

))
,

m2
d̃

=
1

1980

(
78DY13H + 33Dχ1 − 20

(
2
((
g41I

2
B1
− 44g43I

2
B3

)
−
(
IM1 − 44IM3

))
− 3g21IY α

))
,

m2
Q̃1

=
1

3960

(
78DY13H − 627Dχ1

− 20
((
g41I

2
B1

+ 297g42I
2
B2
− 176g43I

2
B3

)
−
(
IM1 + 297IM2 − 176IM3

)
− 3g21IY α

))
. (2.18)

In the above, all couplings and soft parameters are assumed to be given at the messenger scale.

2.2 General Gauge Mediation

Gauge mediated SUSY-breaking encompasses a broad class of models in which flavor blindness

is perhaps most natural [80–85]. In Ref. [54] General Gauge Mediation (GGM) was defined
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as any theory in which all SUSY-breaking effects decouple from the MSSM in the limit of

vanishing MSSM gauge couplings.

Let us first review the formulae for the soft masses in GGM at the messenger scale given in

Ref. [54]. The soft sfermion masses can be parameterized by a set of three parameters, Ar:
4

m2
f̃

=
3∑
r=1

g4rCr(f)Ar , (2.19)

where the sum runs over the gauge groups of the MSSM, and the Ar can be expressed as loop

integrals over hidden sector current-current correlation functions,

Ar ≡ −
∫

d4p

2π4

1

p2

(
− 1

p2
ηµν〈j(r)µ (p)j(r)ν (−p)〉+

2pν
p2
σ̄νβ̇α〈jα(p)j̄β̇(−p)〉+ 〈J(p)J(−p)〉

)
.

(2.20)

The gaugino masses are expressed in terms of three more parameters, MBr, given by

Mr = g2rMBr , (2.21)

where M is the scale of SUSY-breaking and

MBr = −1

2
εαβ〈jα(0)jβ(0)〉 . (2.22)

In order to generate a Higgsino mass parameter, µ, and soft term, Bµ, of the correct order,

gauge mediation may need to be supplemented by additional SUSY-breaking contributions in

the Higgs sector. Therefore, we assume that in the case of the soft Higgs masses, the expression

given in Eq. (2.19) may be modified,

m2
Hu = m2

L̃3
+ δu ,

m2
Hd

= m2
L̃3

+ δd . (2.23)

.

With these definitions for the soft masses, we can now calculate the high scale values of the

RGIs in GGM, listed in Table 3. By inspection, we see that they can be separated into

• Three that test consistency of GGM;

• Six that probe the high-scale mass parameters of pure GGM;

4We neglect a possible explicit hypercharge Fayet-Iliopoulos (FI) dependent term, g21Yf̃ξ, in Eq. (2.19). The

FI term may drive some of the m2
f̃

to negative values, and we assume it is fixed to zero by a Z2 symmetry in the

hidden sector. For further discussion of difficulties associated with FI terms, see [86, 87]. We comment again
on this term below Eq. (2.28).
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• Five that are sensitive to extra structures linking the Higgs and SUSY-breaking sectors

and to the values of the gauge couplings at the messenger scale.

The flavor-independence of gauge mediation is manifest in the formulae listed for the soft

masses, and therefore, as before DB13 and DL13 should vanish at all scales.

The third invariant testing consistency of data with GGM is Dχ1 [54]. It should also remain

approximately zero at all scales, which can be seen as follows. The condition for anomaly

cancelation between a U(1) symmetry Q and another gauge group G with generators tGA(i) in

the representation i reads

TrQtGAt
G
A = 0 , (2.24)

where the trace runs over all degrees of freedom. If Q commutes with all generators of G, this

can be written equivalently as

0 =
∑
i

Qi Tr tGA(i)tGA(i) ,

=
∑
i

Qi d(i)CG(i)

= TrQiCG(i) , (2.25)

where the sums run over all representations i of G and d(i) is the dimension of i. The sfermion

masses in GGM depend on the gauge couplings and the Casimirs of the gauge groups; hence,

if the mixed anomalies between Q and the MSSM gauge groups cancel, we can multiply both

sides of Eq. (2.19) by the charges Q and take the trace to obtain

DQ = Tr(Qm2) =
∑
G

g4GAG TrQiCG(i) = 0 . (2.26)

The second equality in Eq. (2.26) is only valid if the Higgs fields are neutral under Q; otherwise,

the modifications of Eq. (2.23) imply DQ = 2(QHuδu + QHdδd). Choosing Q = χ1, the Higgs

fields are uncharged, and thus Dχ1 vanishes. This property may differentiate GGM from alter-

nate theories with universal soft masses such as mSUGRA, where Dχ1 does not vanish unless

a relevant right-handed neutrino is included.

This argument also suggests DY and DB−L vanish and are RG invariant, since both are

anomaly-free symmetries of the MSSM and both run with DY . However, as mentioned above

the modifications to the Higgs sector in Eq. (2.23) may spoil the vanishing of DY . Furthermore,

although DY is zero in pure GGM, it also vanishes in other SUSY-breaking scenarios, including

mSUGRA.

These first three RGIs are sufficient to either rule out GGM or demonstrate consistency

of GGM with the data. However, they do not constrain the (Ar, MBr, δu, δd, M) parameter

space. Therefore, we now turn to the RGIs with non-zero values at the messenger scale.

14



In the most generic case where DY (and thus the invariants DY13H and IY α) is nonzero, we

can determine the gauge couplings at the high scale. The following relations are satisfied at

the input scale:

DY13H = −10

13
(δu − δd) , (2.27)

IY α =
(δu − δd)

g21
. (2.28)

Therefore, if we can calculate the value of DY13H/IY α at the low scale, we can infer the value of

g21 at the input scale via

g21(M) = −13

10

DY13H

IY α
. (2.29)

Then the Igr RGIs given in Eq. (1.12) can be used with Eq. (2.29) to compute g2 and g3 at the

high scale.

The invariants DZ and DY13H can be used to extract the individual input-scale values of δu

and δd:

δu = −1

2

(
DZ +

13

5
DY13H

)
,

δd = −1

2
DZ . (2.30)

Now we turn to the RGIs with explicit dependence on the gaugino mass parameters to

extract information about the Ar and MBr. From the Igr we immediately obtain

MBr = IBr . (2.31)

For the sfermions, using the IMr , we can obtain the Ar:

A1 =
10

33

(
IM1

g41
− I2B1

)
,

A2 = 2

(
IM2

g42
− I2B2

)
,

A3 = −2

3

(
IM3

g43
− I2B3

)
, (2.32)

where the gr are the gauge couplings at the unknown scale, M , that can be deduced from

Eq. (2.29) (note that the gr used to compute the IBr are at the low, measurement scale)5.

If δu is found to be equal to δd, and thus the gauge couplings at the high scale cannot be

5If there is an explicit hypercharge FI term at the input scale, the only effect on the RGIs is to change the
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extracted from the RGIs, explicit RG evolution may be the only available method for deter-

mining M , choosing it to be the scale at which m2
ũ1

= m2
ũ3

. This would require knowledge not

only of all up-type soft mass parameters at the low scale, but also of the soft trilinear coupling

At of the stop to the Higgs, which appears in the m2
ũ3

RGE6. Moreover, as discussed previously,

the evolution of the soft masses is linked to the evolution of all other parameters via the DY -

terms. Therefore, it is expected that there will be large uncertainties in the determination of

the messenger scale by this method.

As mentioned before and as we will see in Section 3 below, IM1 and IM2 could suffer from

large uncertainties induced by cancelation between potentially large masses. If IM12 is used

instead, this pitfall is avoided, but in general only the following correlation between A1,2 and

g1,2 can be obtained,

g41
33

10
A1 + g42

11

2
A2 = IM12 − g41I2B1

− 11g42I
2
B2
. (2.34)

In the above, the coefficients of the IB1 and A1 terms are significantly smaller than those of IB2

and A2, particularly for low values of the messenger scale where g22 ' 2g21. Therefore, unless

A1 � A2, for low messengers scales, the above equation then gives the approximate expression

for A2,

A2 ≈
2

11

(
IM12

g42
− 11I2B2

)
. (2.35)

2.3 Constrained MSSM with Non-Universal Higgs Masses

The CMSSM + NUHM [88–94] is another common model realizing flavor universality. The

messenger scale is the GUT scale, however, here we will consider the more generic possibility

of M 6= MGUT, as for example occurs in Mirage Mediation [95–97]. The sfermions are given a

common soft mass m0 and the gauginos share a soft mass m1/2 at the scale M . As in the GGM

case, the Higgs masses are allowed to differ from the sfermion masses by the factors δu and δd.

From the fourth column of Table 3, we see that the non-vanishing RGIs overconstrain the

(m0, m1/2, gr(M), δu, δd) system, allowing multiple ways of testing consistency and extract-

ing parameters. Both experimental errors and 2-loop contributions to the RGIs should be

considered to decide which avenues to use for each purpose. The unification of gaugino mass

input scale value of IY α:
δu − δd
g21

→ δu − δd
g21

+ 11ξ. (2.33)

Eq. (2.32) for the Ar remains unchanged; however, this shift is sufficient to spoil the extraction of g1 at the
input scale from the inhomogeneities in the Higgs sector.

6One could equally seek the scale where m2
d̃1

= m2
d̃3

, but it is likely that the soft trilinear coupling Ab will

be more difficult to determine experimentally than At.
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parameters at some scale M∗ demands the following consistency relationships:

IB1 −
33

5
IB2 = Ig2m1/2 , (2.36)

IB1 +
33

15
IB3 = Ig3m1/2 . (2.37)

where m1/2 is now a universal gaugino mass parameter at M∗, which is not necessarily con-

strained to be equal to M by these relations.

In the MSSM the gauge couplings unify at the grand unification scale, and therefore at any

arbitrary scale the following relationship is satisfied

Ig3 = −4

7
Ig2 . (2.38)

Together Eqs. (2.36)–(2.38) indicate that gaugino mass unification requires the simple condition

5

12
IB1 − IB2 +

7

12
IB3 = 0 . (2.39)

This relation is necessary but not sufficient to ensure unification. In addition, a second require-

ment following from Eqs. (2.36)–(2.38) is

IB1g
2
1(M∗) =

5IB1 − 33IB2

5Ig2
. (2.40)

If we demand that Eq. (2.40) should be satisfied for a sensible value of M∗, between about 105

and 1016 GeV, then the IBi should obey the inequality

IB1

4
.

5IB1 − 33IB2

5Ig2
.
IB1

2
. (2.41)

In the particular case where the gaugino masses unify at M∗ = MGUT, IB1 = IB2 = IB3 and

Eq. (2.39) holds directly, while the upper bound of Eq. (2.41) is approximately saturated. Note

that it is not unreasonable for a model to obey Eq. (2.39) while still violating Eq. (2.41).

This happens, for example, in anomaly mediated SUSY-breaking [98, 99], where the IBi are

proportional to the β-function coefficients of the gi, and so Eq. (2.39) holds. The gaugino

masses do not unify in anomaly mediation, however, spoiling Eq. (2.41) (and the extracted

value of m1/2 from Eq. (2.36) or Eq. (2.37) would be zero). Note further that these relations

involve invariants sensitive only to the gaugino sector, and therefore are expected to have small

experimental uncertainties.

Eqs. (2.36)–(2.41) guarantee gaugino mass unification, but do not enforce M = M∗, which

is a requirement in the CMSSM. In mirage mediation or minimal gauge mediation, the masses
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unify, but M 6= M∗ in general. Therefore, to differentiate the CMSSM from these other models,

one may test the equality of M with M∗, if δu 6= δd, by equating the messenger scale value of

g21 calculated via Eq. (2.29) with the M∗ value of g21 found from Eq. (2.40). Additionally, the

extracted value of m1/2 from Eq. (2.36) has to be consistent with the gaugino mass calculated

from the other RGIs. These considerations enforce that the following set of relations, in addition

to Eq. (2.39), have to be satisfied for the spectrum to be consistent with the CMSSM:

IY α = − 13DY13HIB1Ig2
2(5IB1 − 33IB2)

,

IM1 =

(
5IB1 − 33IB2

5Ig2

)2

+
33Dχ1

40
,

IM2 =

(
5IB1 − 33IB2

5Ig2

)2

+
Dχ1

8
,

IM3 =

(
5IB1 − 33IB2

5Ig2

)2

− 3Dχ1

16
. (2.42)

If the data satisfies Eq. (2.39) and Eq. (2.42), one can proceed to the extraction of parameters.

Dχ1 immediately yields the value of the soft sfermion mass m0, and Eq. (2.30) can still be used

to obtain δd and δu. Turning to the 2-loop β-functions for the RGIs listed in Appendix A, we

find that IM1 is a 2-loop invariant in the approximation that g1, the soft trilinear couplings,

and the lepton Yukawa couplings are set to zero. It may therefore be useful to extract m1/2

from IM1 . However, the advantage of 2-loop invariance can be mitigated by the consideration

of experimental errors, which as noted previously may be large for IM1 . In that event m1/2

should be taken directly from either Eq. (2.36) or Eq. (2.37), for which the experimental errors

are expected to be small:

m2
0 =

Dχ1

5
,

m1/2 =
5IB1 − 33IB2

5Ig2
. (2.43)

The g21 at the messenger scale can then be obtained via Eq. (2.40):

g21 = m1/2/IB1 . (2.44)

Taken together, the consistency relations, Eq. (2.39) and Eq. (2.42), provide strong con-

straints that make it highly unlikely, for example, for a generic flavor-blind or GGM spectrum

to mimic the CMSSM + NUHM.
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3 Experimental Prospects for the MSSM RGIs

3.1 Extracting Soft Masses from Observables

We now turn to the prospects for measuring the RGIs at the LHC. In practice it is necessary to

convert the observed pole masses into the soft masses entering into the RGIs at the TeV scale.

Here we comment only briefly on some relevant features of the analysis in the sfermion sector.

For comprehensive studies, see Ref. [46–48].

For the first and second squark generations, the off-diagonal components of the mass ma-

trices are proportional to the corresponding fermion masses and can therefore be neglected.

Furthermore, the soft masses for the up-type and down-type left-chiral states are equal by

gauge invariance. This allows one squark pole mass to be written in terms of the others and

thus removed from the RGIs. For instance,

m2
ũL

= m2
d̃L

+m2
W cos 2β , (3.45)

where we have ignored the quark masses and the subscript on the squarks refers to the pre-

dominantly left-handed (and therefore chargino-interacting) mass eigenstate of the squarks in

the spectrum.

For the third generation squarks, the off-diagonal components cannot be ignored. Therefore,

in addition to pole masses, mixing angles must be measured in order to extract the soft masses.

However, there is still one more observable than there are parameters in each sector, allowing

the sbottom mixing angle to be removed

cos2 θb̃ =
m2
t̃1

cos2 θt̃ +m2
t̃2

sin2 θt̃ −m2
b̃2
−m2

t +m2
b −m2

W cos 2β

m2
b̃1
−m2

b̃2

. (3.46)

Here and below, the subscripts 1 and 2 denote the mass eigenstates. This leaves only the stop

mixing angle to be determined experimentally.

For the slepton sector, the result depends on the treatment of the sneutrinos. In GGM

models, the right handed sneutrinos, if present in the spectrum, do not receive SUSY-breaking

masses at the messenger scale. Their masses are therefore controlled by the Majorana mass

scale, MR, of the right-handed neutrino partners, which only couple with the rest of the ob-

servable sector via the neutrino Yukawa couplings7. Since the neutrino masses

mν ∼ O
(
h2ν sin2 βv2

MR

)
(3.47)

are smaller or of the order of 1 eV, these Yukawa coupling effects are very small provided

7In more general flavor-blind models, the SUSY-breaking masses for the right handed sneutrinos are naturally
of the order of the soft scale, and the same conclusion holds.
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MR
<∼ O (1010 GeV) . For values of MR > 1010 GeV, the Yukawa effects must be taken into

account. However, they will only have an impact on the soft masses if the messenger scale is

larger than MR, since otherwise the right-handed sneutrinos decouple at the messenger scale.

In this work we will make the assumption that either MR
<∼ O (1010 GeV) or MR

>∼ M . This

justifies our neglect of any right-handed sneutrino effects in the RGIs, as we have implicitly

done in our treatment of the lepton sector in this article. With this assumption, the mixing

angles in the sneutrino sector are negligibly small for all generations.

For the first two generations, as in the squark sector we can remove either a slepton or a

sneutrino mass. For the third generation we can remove either m2
ν̃τ or the stau mixing angle

using the relation

m2
ν̃1

= m2
τ̃1

cos2 θτ̃ +m2
τ̃2

sin2 θτ̃ +m2
W cos 2β , (3.48)

where we have ignored the explicit dependence on the relatively small τ mass.

Even if a large number of masses can be determined at the LHC, a finite set of ambiguities

will arise and affect the calculation of the RGIs. For the first and second generation sfermions,

unless the mass eigenvalues are nearly degenerate, their measurement is not sufficient to com-

pute the RGIs, because it must still be determined which eigenstate is the superpartner of

the left chiral and the two right chiral quarks. An incorrect assignment leads (in the limit

of vanishing D-terms in the mass matrix), for instance, to a reversal of the soft masses m2
Q̃

and m2
ũ for the case of the up-type first and second generation squarks, and these parameters

do not enter into the RGIs in a symmetric way. Similar reversals may occur for the cases of

the down-type squarks and the sleptons. Measurements in the chargino sector may be able to

unravel this ambiguity, since only the left-handed first and second generation sparticles couple

to the charginos.

Another problem is the difficulty in distinguishing up-type and down-type first and second

generation sfermions at hadron colliders. Since the dominant production mechanism is through

the strong force, the electromagnetic charges may be unmeasurable. However, if our intent

is to test GGM, it is likely that m2
ũ1

> m2
d̃1

, since this relation holds at the input scale if

A1 ≥ 0 (which is necessary for a nontachyonic selectron mass in the absence of an FI term)

and is maintained if DY ≥ 0 (although this condition is not necessary). Alternatively, one

can test which, if any, of the two squark mass choices leads to a fulfillment of the necessary

condition of DB13 = Dχ1 = 0, and take that as the hypothetical correct assignment when using

the other RGIs to test the GGM scenario further. The contribution of m2
ũ1

and m2
d̃1

to Dχ1 is

quite different and of opposite sign, and therefore a cancelation of this RGI within errors for

both choices of the squark masses is highly unlikely.
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Figure 1: Experimental errors in the low scale determination of the RGIs plotted vs. m2
d̃1

, assum-

ing 1% uncertainties in all soft masses and scanning over the high scale parameters as in
Eq. (3.49). The clear correlation seen in these plots demonstrates that although the invari-
ants involve many masses squared, the total uncertainties are dominated almost entirely
by the uncertainty in the squark masses. RGIs with small uncertainties are omitted for
brevity.
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Figure 2: Experimental errors in the calculated values of the high scale GGM parameters using the
RGI reconstruction method. Parameters with small uncertainties are omitted for brevity.
The spread in the calculated Ar parameters is due mainly to 2-loop effects, and can be
reduced using the technique discussed in Section 3.3. See Fig. 6.
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3.2 Measurement Uncertainties in RGIs and GGM Parameters

It is difficult to estimate how well the physical quantities of the MSSM can be measured at

the LHC, even if the sparticles are kinematically accessible. Most mass measurement studies

in the literature have been performed in mSUGRA/CMSSM benchmark scenarios, under the

assumption that sparticles will be produced in long cascade decays from strongly produced

squarks and gluinos (for a detailed study in the context of the LHC and a future linear collider,

see [100]). Endpoint methods and other kinematic variables may then be used to extract the

pole masses. As for the stop mixing angle, in Ref. [101] it was shown that the angle and the

light stop mass may be inferred from a fit to measurements of ratios of stop branching ratios

into charginos and neutralinos (for other stop mixing studies, see [102, 103]). The authors

demonstrated that this method can be effective if the decays are kinematically allowed and if

the parameters of the neutralino/chargino sector have already been measured. However, it is

clear that these methods will only be possible in a portion of the allowed parameter space, even

restricting just to the regions compatible with GGM. Therefore, it is challenging to conjecture

what can be done at the LHC without reanalyzing the reach point by point in parameter space,

an exercise which is beyond the scope of this work.

With this in mind we forgo the application of projected measurement uncertainties to the

physical parameters and simply apply a universal uncertainty to the soft masses entering into

the RGIs. This allows us to get a general notion of how well the low scale parameters will have

to be measured in order to determine the RGIs and the high scale parameters with a certain

precision.

We perform a numerical scan over messenger scale inputs, restricting for the purposes of

illustration to the parameter space of GGM and taking the following ranges of values:

0.1 ≤ Ar ≤ 1.0 TeV2 ;

0 ≤ δu,d ≤ 1.0 TeV2 ;

0.1 ≤ MBr ≤ 1.0 TeV ;

2 ≤ tan β ≤ 50 ;

106 . M . 1015 GeV . (3.49)

For each point in our scanned parameter space of models, we compute the soft spectrum,

run the soft masses down to the scale µi = 1 TeV, and calculate the resulting central value and

uncertainties for the RGIs. We then reconstruct the high scale GGM parameters, assuming

a universal 1% measurement error on the soft parameters. We enforce the conditions that

the low energy spectrum is within the reach of the LHC and satisfies mweak > 100 GeV and

mstrong > 300 GeV, where the mweak are the masses of the weakly-interacting sparticles and

mstrong are the colored sparticle masses.
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As an approximation, we consider the propagation of errors in quadrature, although this

is only an estimate since most masses would be obtained in decay chains and therefore their

experimental errors are expected to be highly correlated. The quadrature combination also

allows the errors from a larger universal soft mass fractional error to be obtained simply by

re-scaling the results presented here for 1%.

Fig. 1 gives the net experimental error in the RGIs as a function of m2
d̃1

. We omit DL13 ,

IBr , and Igr , which have relatively small uncertainties. With the exception of IM3 , all the

errors reflect a small y-intercept and small variation for a given m2
d̃1

. This demonstrates that

although the invariants involve many masses squared, the total uncertainties are dominated

almost entirely by the uncertainty in the squark masses, assuming all individual mass errors

are of the same order. Since in the GGM spectrum the squark mass splittings are proportional

to smaller gauge couplings, they are typically small compared to the masses themselves unless

A1,2 � A3. Thus the expected error tends to be controlled essentially by a single parameter,

as reflected in the scan. In the case of IM3 the gluino error must also be included.

Going a step further, we can estimate the uncertainties in the reconstructed values for

the high scale GGM parameters. For the Ar this reconstruction relies on the premise that

δu 6= δd within experimental errors, which can be determined by testing the consistency of

DY13H with zero. If δu = δd within errors, then the extraction of g1 at the high scale using

Eq. (2.29) leads to potentially meaningless results. Fig. 2 gives the errors in the calculated

values of the Ar, δu,d, and g2r at the messenger scale, for those points in the scan satisfying

|DY13H | > σDY13H . For brevity we omit the MBr, which have small uncertainties controlled

entirely by the corresponding gaugino masses.

It is clear from the range of the y-axes in Fig. 2 that even a precise determination of

the soft masses can lead to moderate uncertainties in the reconstructed Ar. This is mostly

due to cancelations between large squark mass parameters, which reduce the value of the IMr

while increasing the magnitude of the uncertainties. This explains why the value of A3 can

be determined with relatively good precision, while even for large values of A1, its uncertainty

may be as large as its calculated value. In most cases, however, the uncertainties in the Ar are

smaller than their calculated values, indicating that useful information can be obtained about

the allowed range of these parameters. The considerable spread in the reconstructed values of

the Ar is due to 2-loop effects and will be mostly compensated by methods to be discussed in

the next section.

As mentioned previously, if measurements suggest δu = δd within errors, one can still obtain

constraints on the Ar by making educated guesses for the gauge couplings at the messenger scale.

Taking the messenger scale to lie between 105 and 1016 GeV, the gauge coupling dependence
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entering into Eq. (2.32) can then be estimated as8

g−41 ≈ 10± 6 ,

g−42 ≈ 4.5± 0.5 ,

g−43 ≈ 2.5∓ 1.5 . (3.50)

These errors are not very different from what is obtained by propagating soft mass experimental

errors through the g1 reconstruction in the case δu 6= δd. Observe that the values of the couplings

are correlated and should satisfy the Ig2,3 RGI constraints.

Therefore, one can always use the RGIs to obtain interesting constraints on the Ar, even if

δu = δd within uncertainties.

3.3 2-loop Effects in GGM

One can easily check that the RGIs discussed are not strictly preserved at the 2-loop level and

therefore it is important to estimate the magnitude of the 2-loop effects. For the scan discussed

in the previous section, we implemented full 2-loop RG equations for the soft SUSY-breaking

parameters and the gauge and Yukawa couplings [104] into Mathematica. We compared the

running of the parameters calculated by our code with those obtained from the public program

SuSpect [105], finding excellent agreement.

The spread in the reconstructed values of the Ar in Fig. 2 demonstrates that apart from

experimental error, there is also a theoretical uncertainty in the calculated low scale value

of invariants since the RGIs defined above have vanishing β-functions only at 1-loop order.

The difference between the low and high scale central values of the RGIs and the difference

between the input and reconstructed central values of the GGM parameters gives the 2-loop

contributions to these quantities.

In Appendix A we list the 2-loop β-functions for all the RGIs, ignoring the small contribution

from the hypercharge couplings as well as the terms proportional to the trilinear coupling, which

however have been included in our numerical work. We see that the contributions to DL13 and

IM1 vanish in the limit that ye → 0, and so in general these functions behave as approximate

RGIs at the 2-loop level. Furthermore, the β-function of DZ is proportional to the square of

the bottom Yukawa coupling and it is therefore only relevant for large values of tan β. Finally,

the β-function of DB13 does not contain any strong gauge coupling contribution and thus tends

to be small for low values of the messenger scale.

To analyze the invariants with larger 2-loop contributions, it is useful to consider a further

limit of the β-functions defined in Appendix A in which we turn off the slepton masses, the

8In principle, if the messenger scale is . 107 GeV, it may be determined from decays of the NLSP to the
gravitino inside the detector. Assuming this is the case one could take the messenger scale between 107 and
1016 GeV, with g−4

1 ≈ 9± 5, g−4
2 ≈ 4.5± 0.5, and g−4

3 ≈ 2.5∓ 1.
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Figure 3: Left: 2-loop shifts in the low scale values of the RGIs. The x-axis is a simple approximation
to the 2-loop β-function. The red line denotes the best-fit for ∆ in terms of our approximate
β function. Right: The ratio of the residual 2-loop effects, after subtracting the best fit β
from ∆, to the experimental errors. We assume 1% uncertainties in all of the soft masses.
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Figure 4: Left: 2-loop shifts in the low scale values of the RGIs. The x-axis is a simple approximation
to the 2-loop β-function. The red line denotes the best-fit for ∆ in terms of our approximate
β function. Right: The ratio of the residual 2-loop effects, after subtracting the best fit β
from ∆, to the experimental errors. We assume 1% uncertainties in all of the soft masses.
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Figure 5: Left: 2-loop shifts in the low scale values of the RGIs. The x-axis is a simple approximation
to the 2-loop β-function. The red line denotes the best-fit for ∆ in terms of our approximate
β function. Right: The ratio of the residual 2-loop effects, after subtracting the best fit β
from ∆, to the experimental errors. We assume 1% uncertainties in all of the soft masses.
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Figure 6: Experimental errors in the calculated values of the high scale GGM parameters using the
RGI reconstruction method. Parameters with small uncertainties are omitted for brevity.
These plots differ from those of Fig. 2 in that the bulk of the 2-loop corrections have been
accounted for via simple shifts in the RGIs, as detailed in Section 3.3.

29



Figure 7: Percent deviation in left-handed squark masses necessary to generate values of DB13 (blue
points) or Dχ1 (red points) more than 1σ away from zero, assuming 1% experimental
uncertainties in the soft masses.

Figure 8: Percent deviation in right-handed up-type squark masses necessary to generate values
of DB13 (blue points) or Dχ1 (red points) more than 1σ away from zero, assuming 1%
experimental uncertainties in the soft masses.

Figure 9: Percent deviation in right-handed down-type squark masses necessary to generate values
of DB13 (blue points) or Dχ1 (red points) more than 1σ away from zero, assuming 1%
experimental uncertainties in the soft masses.

30



Figure 10: Percent deviation in left-handed slepton masses necessary to generate values of DL13 more
than 1σ away from zero, assuming 1% experimental uncertainties in the soft masses.

Figure 11: Percent deviation in right-handed slepton masses necessary to generate values of DL13

more than 1σ away from zero, assuming 1% experimental uncertainties in the soft masses.

bino mass, and the Higgs masses, set the masses of all squarks equal to md̃1
, and yu =

√
3/4.

This reduces the 2-loop β-functions to simple functions of tan β, M2, M3, and md̃1
. The 2-loop

corrections can then be estimated from a limited number of parameters as the values of these

functions multiplied by log(M/TeV).

To demonstrate the utility of these estimates, we analyze numerically the shifts in the

RGIs induced by the full 2-loop RGEs. In the left-hand column of Figs. 3-5, we plot the

2-loop corrections, ∆(RGI), against the approximate 2-loop β-functions. The best-fit line

passing through the origin then gives an estimate for the average value, 〈∆〉, of the 2-loop

corrections. The slope of the line corresponds approximately to log(M0/TeV), where M0 is

some intermediate messenger scale. We tabulate the slopes in Table 4. The deviation from

this approximation is due to residual 2-loop running as well as to the different values of the

parameters over which we scan. In the right-hand column we subtract off the approximated

2-loop β-function shifts, 〈∆〉s, from the 2-loop contributions, ∆s, at every point in the scan
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RGI 〈∆〉 RGI 〈∆〉 RGI 〈∆〉 RGI 〈∆〉

DB13 11.7 βDB13
DL13 0.47 βDL13

Dχ1 9.5 βDχ1 DY13H 8.5 βDY13H

DZ 7.4 βDZ IYα 7.9 βIYα IB2 10.6 βIB2
IB3 9.95 βIB3

IM2 14.7 βIM2
IM3 6.3 βIM3

Ig2 16.5 βIg2 Ig3 9.65 βIg3

Table 4: Equations for the best fit line for the 2-loop beta functions, corresponding to Figs. 3-5.

and plot the ratio of ∆−〈∆〉 to the experimental uncertainties against the approximate 2-loop

β-functions. The spread in the y-axis is due to the residual 2-loop effects not accounted for by

the 〈∆〉s.
From the numerical simulation we see that in most cases, even with an optimistic exper-

imental error of 1% in the soft masses, the experimental error tends to be larger than the

residual 2-loop effects on the RGIs once the shift is performed to remove the bulk of the 2-loop

corrections. In those cases it is justified to treat the 1-loop RGIs as true invariants in the de-

termination of the parameters of the GGM models. For IM2 , the 2-loop corrections can become

of the same order as the 1% experimental errors. One could then in principle combine the

uncertainty in IM2 due to the 2-loop effects in quadrature with the experimental errors. Notice

that the determination of the messenger scale by any independent method can serve to further

reduce most of the uncertainty associated with the 2-loop evolution of the soft parameters.

In Fig. 6 we repeat the plots of Fig. 2 using the shifted RGIs to compute the GGM input

parameters. This further demonstrates the advantage of the simple shifts and the subsequent

dominance of experimental errors over residual 2-loop corrections.

Finally, we consider more carefully DB13 , DL13 , and Dχ1 . The first two are expected to vanish

for all flavor-blind models and all three vanish in GGM. To test the power of these invariants

as discriminants we calculate the percent deviation in the soft SUSY-breaking parameters that

would lead to a departure from zero. For instance, even a 10% shift in mQ̃1
entering into the

Dχ1 RGI is enough to shift it by more than 5σ outside the range experimentally consistent

with zero. Similar conclusions hold for DB13 and DL13 . For a few of the soft masses we plot

in Figs. 7-11 the percent deviation in them that would cause the invariants to take values

more than 1σ away from zero. Dχ1 and DB13 are quite sensitive to the squark masses; they

are less sensitive to the generically smaller slepton masses, but for those DL13 is an excellent

discriminator. As mentioned before, the effect of a larger experimental error in the soft masses

can be simply seen as a rescaling of the y-axis of Figs. 7-11.
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4 Conclusions

Low energy supersymmetry provides a predictive framework of physics at the weak scale. How-

ever, the precise spectrum of the new particles depends on the soft SUSY-breaking parameters,

which proceed from the unknown mechanism mediating SUSY-breaking from the hidden sector

to the MSSM at high energies. Knowledge of the soft parameters at the messenger scale will

greatly contribute to the understanding of UV physics. In principal the RG evolution of the soft

parameters will allow the determination of their high scale values as a function of the measured

values at the weak scale. The running of each scalar parameter, however, is complicated by the

dependence of the β-function on nearly all other running soft parameters.

In this work we have proposed the use of Renormalization Group invariants to resolve the soft

SUSY-breaking parameters at the messenger scale. Of the fourteen RGIs we have considered,

two may be used to test high scale flavor universality of the soft parameters, and twelve encode

information about the thirteen variables associated with the most general CP-conserving flavor-

universal models. Indeed, if the messenger scale can be determined by alternative methods, the

whole spectrum at high energies could be established.

Specific models of SUSY-breaking, however, lead to relationships between the different spar-

ticle masses at the messenger scale. For example, in General Gauge Mediation, even assuming

a modification of the soft parameters in the Higgs sector, only eleven free parameters remain.

Moreover, an additional RGI must vanish and may be used, together with the two RGIs re-

lated to the flavor independence, to test consistency of the low scale spectrum with GGM.

As we have shown in this work, the deviation from zero of these invariants is a very powerful

discriminant for these models. The remaining eleven RGIs can be used to extract most, and

in some cases all, of the GGM parameters at the messenger scale. More minimal models, for

example the CMSSM + NUHM, depend on fewer parameters to define the high energy sparticle

spectrum. In those cases the system is over-constrained, leading not only to the determination

of all parameters but also to consistency relations between the values of several RGIs.

Although RG invariance holds only at the 1-loop level, we have shown that in general

the 2-loop evolution leads to modifications of the RGIs that are smaller than their expected

experimental errors obtained from aggressive 1% uncertainties in the low scale soft masses.

Moreover, we have shown that a simple approximation based on the 2-loop β-functions and

dependent on a few low-scale parameters effectively describes the 2-loop corrections to the

invariants. These functions can be directly subtracted from the low energy measured values

of the RGIs, thereby reducing the theoretical uncertainty. The remaining uncertainty is then

primarily due to the unknown messenger scale and can be reduced once further constraints are

obtained on the value of this scale.

RGIs offer a simple and modular approach to the reconstruction of messenger scale physics.

The dependence of high scale parameters on observed values at the weak scale is reduced from
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a set of integrals to a set of algebraic equations. Moreover, each RGI depends only on a subset

of the low scale masses. Although we have not investigated this possibility in detail, it would

be interesting to consider strategies for the use of RGIs if only a limited set of the masses

are extracted at the LHC or a future linear collider. In such a situation traditional methods

relying on direct integration of the RG equations will fail in the sfermion sector, while if any

RGIs depend only on the known masses, they may still be used to provide constraints on the

high scale structure. It would also be interesting to examine in greater detail the use and

effectiveness of the RGI method in other proposed models for the mediation of SUSY-breaking,

as well as in non-minimal models of low scale supersymmetry. Additionally, in this work

we have taken a simple quadrature sum in the estimation of experimental errors, neglecting

correlations which in many cases may be significant. Finally, a more realistic determination of

the expected experimental uncertainty in the extraction of the soft breaking parameters could

alter the overall uncertainties in parameter reconstructions. We leave these investigations to

future work.
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APPENDIX A

2-Loop β-Functions for the 1-Loop RG Invariants

In the following set of 2-loop β-functions, we set the hypercharge gauge coupling g1 and the

soft trilinear couplings Ai to zero. The subscripts on the β functions are in correspondence

with the invariants defined in the text.

βDB13
=

1

64π4

(
3g22

(
m2
d̃3

+m2
Q̃3

+m2
Hd

+ 2M2
2
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ẽ3

+m2
L̃3

+m2
Hd

+ 2M2
2

)
y2e + 2

(
m2
ẽ3
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